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Abstract 

Subsoil constraints are important growth limiting factors in many soils of north-eastern Australia as they 

reduce the ability of roots to obtain water and nutrients. However, accurate information on the variability of 

subsoil constraints across the landscape is difficult to obtain. We developed an empirical-statistical model 

using historical wheat yield data, remotely sensed (Landsat) imagery and in-crop rainfall to estimate yield 

variability at sub-paddock scale to accurately identify areas suspected of subsoil constraints at farm scale. 

The yield predictions for 16 paddocks where wheat crops were grown during 2000-08 showed reasonably 

good agreement with farmer-reported yield (r
2
 = 0.50). Analysis of the yield predictions showed 53% of the 

farm area exhibited consistently low yield, indicating the presence of at least one yield constraining factor. 

Soil samples averaged for low-yielding areas had substantially high concentrations of chloride in subsoil, 

high exchangeable sodium percent in the surface and subsoil and high nitrate nitrogen and volumetric 

moisture in the profile as compared to high-yielding areas. The results suggest that the paddocks or areas of 

paddocks exhibiting consistently low yields are an indicator of the presence of yield-limited factor/s. This 

offers the potential to map suspected areas of subsoil constraints.  
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Introduction 

Salinity, sodicity, acidity and phytotoxic concentrations of chloride (Cl) in subsoils are major constraints to 

crop production in many soils of north-eastern Australia because they reduce the ability of crop roots to 

extract water and nutrients (Dang et al. 2006). Among subsoil constraints, subsoil Cl concentrations have a 

greater effect in reducing soil water extraction in the subsoil (Dang et al. 2008). Subsoil constraints vary both 

spatially across the landscape and vertically within soil profiles. Grid sampling to identify the distribution of 

possible subsoil constraints, both spatially across the landscape and within the soil profile, is time-consuming 

and expensive.  

 

Crop yield mapping provides high-resolution estimates of spatially varying crop production; however, the 

adoption of yield mapping in Australia has varied (Jochinke et al. 2007), such that the detailed information is 

only patchy.  Recent developments in sensing technologies have shown promise for quantifying soil and crop 

yield variations both within and between agricultural fields (Fisher et al. 2009).  The potential advantages of 

remotely sensed images are: (i) the ability to bypass field measurements of yield; (ii) the ability to estimate 

yield at a range of spatial scales, thus eliminating sampling error within field variability; and, (iii) the 

availability of archived imagery thus enabling analysis of past growing seasons that may not have recorded 

yield (Lobell et al. 2007).  Further, surrogate yield information may be generated from satellite images, 

allowing extrapolation to broader scales.  Australia has more than 25 years of historical Landsat satellite data 

available. There is potential to increase the quantity and quality of spatial data needed to identify causes of 

spatial and temporal variability in cropping areas. We, therefore, attempted to develop an empirical-

statistical model to predict yield variability at sub-paddock scale. This would determine consistently low 

yielding areas, and indicate the presence of a subsoil constraint.   

 

Methods 

We used historical mid-season normalised difference vegetation index (NDVI), generated from Landsat 

imagery to simulate wheat grain yield for a 3240-ha farm near Goondiwindi in southern Queensland, 

Australia (28° 19' S and 150° 30' E). In this area, wheat crops are generally sown in May. Anthesis is around 

mid-September, and crops are harvested during October. Long-term average annual rainfall for the area is 

617 mm and average in-crop rainfall (May-October) is 225 mm. The climate of the region is semi-arid with 
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high potential evapotranspiration (1300-2200 mm per annum) (Webb et al. 1997). The common soil types of 

the farm are grey and brown Vertosols (Isbell 1996). 

 

Site-specific yield data, available for 31 out of 55 wheat crops grown in 16 paddocks during 2000-2008, 

were accessed from the farmer, who collected yield data at harvest using AgLeader yield-monitoring 

equipment, linked to a differentially corrected GPS. Each field dataset was passed through several cleaning 

algorithms to remove erroneous yield associated with harvester dynamics, speed change, overlaps and turns. 

The clean yield data for each paddock and season was spatially interpolated with block kriging at the nodes 

of a 25-m grid, with 20-m blocks, using the Vesper software (Whelan et al. 2001). Cloud-free images of 

Landsat 5 TM (Thematic Mapper) and Landsat TM 7 ETM+ (Enhanced Thematic Mapper) satellite sensors 

were acquired close to anthesis.  All images were geometrically and radiometrically corrected. The locations 

of each paddock boundary were identified on the satellite image, and the NDVI transformations were 

obtained for each crop where a wheat crop was grown during 2000-2008. For each node of the 25x25 m 

grain yield grid, the NDVI values were obtained using nearest neighbour interpolation.  

 

A random selection of 5% of the data was used to develop the relationship between grain yield and NDVI 

and the in-crop rainfall before acquiring landsat (ICR-BL) image:  

 

Grain yield = 1.1347 NDVI + 0.01389 ICR-BL; r
2
 = 0.72, P = 0.00001, RMSE = 0.39 (1) 

 

Grain yields were estimated in each year for each pixel using multiple linear regression equation between 

header yield and NDVI and validated with farmer-reported yield for wheat crops grown during 2000-2008. 

For estimating field-average surface and subsoil constraints, we performed survey using Geonics EM38
®
 in 

vertical dipole mode to map apparent electrical conductivity (ECa) levels. Soil cores to 1.5 m depth and 

separated in 8 depth intervals were taken at selected points as determined from ECa surveys and analysed for 

physical and chemical properties (Dang et al. 2009). Soil pH, EC, Cl and NO3-N were determined in 1:5 

soil:water suspension. Electrical conductivity of saturation extracts (ECse) was calculated from EC (1:5 

soil:H2O), Cl and clay content using the method of Shaw (1999). Cation exchange capacity (CEC) and 

exchangeable cations were determined using a 1M NH4Cl (pH 8.5) extracting solution (Rayment and 

Higginson 1992). Prior to extraction, soluble salts were removed by pre-washing with 60% aqueous alcohol. 

The extracts were analysed for exchangeable cations on inductively coupled plasma-optical emission 

spectrometer. Exchangeable sodium percent (ESP) was calculated as ratio of exchangeable Na
+
 to CEC. To 

identify areas suspected of subsoil constraints, the predicted yield images for each year were converted to 

percentiles, with 0 and 100% corresponding to minimum and maximum estimated yields. The proportion of 

each paddock that exhibited consistently low yields was compared with the proportion expected by chance at 

80
th
 percentile (Lobell et al. 2007). 

 

Results 
Spatial variability of subsoil constraints 

Across locations, average Cl concentrations, ECse, and ESP increased with soil depth where as soil pH 

increased to 0.2 m and decreased at depth (Figure 1). Across locations at different depths, average Cl ranged 

from 49 to 1092 mg/kg to a depth of 1.5 m and ECse ranged from 0.71 to 6.71 dS/m. Compared to Cl 

concentration, vertically averaged ECse was more spatially variable which was primarily due to the presence 

of gypsum at depth.  
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Figure 1.  Average Cl concentration, electrical conductivity of saturated extract, exchangeable sodium percent, 

and soil pH with depth across whole farm. Error bars represent standard deviation. 

 

Across locations, ESP ranged from 8 to 37% and soil pH ranged from 7.6 to 4.5 to 1.5 m and was more 

spatially variable than ESP at depth. Most of these soils were found to be saline (ECse >4.0 dS/m) below 0.5 
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m depth, sodic (ESP ≥ 6%) below 0.1 m depth, and had potentially phytotoxic levels of Cl (> 600 mg/kg) 

below 0.5 m depth (Northcote and Skene 1972; Shaw, 1999; Dang et al. 2008). 

 

Yield estimation 

The Landsat-based yield estimates of 16 paddocks where wheat crops were grown during 2000-2008 showed 

reasonably good agreement with farmer-reported yield. Most of the values were near 1:1 line (Figure 2a). 

This relationship was further improved by using average yield estimate across all seasons-years and average 

farmer-reported yield for all seasons (Figure 2b) suggesting that use of single year of yield data or satellite 

image would not be enough to predict consistently low or high yielding areas of the paddock.  
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Figure 2.  Comparison of Landsat-based wheat yields for 16 paddocks during 2000-08 with farmer-reported 

yields (a) for individual seasons, and (b) average of all seasons. 

 

Identifying spatial variability of subsoil constraints 

Using a threshold p = 80%, significantly more pixels never exceeded the threshold than would be expected 

by chance (Figure 3a), indicating the presence of a yield constraining factor. Fifty-three percent of the area 

never reached the 80
th
 yield percentile (Figure 3b).  

 

(a)  (b)  

Figure 3.  (a) Probability of pixel exceeding 80
th

 percentile of yield, and (b) predicted subsoil constraints, for the 

entire farm. 

 

Soil from unconstraint areas had substantially high concentrations of Cl in subsoil, high NO3-N, volumetric 

moisture in the profile and high ESP in the surface soil as compared to constraint areas (Figure 4). High Cl in 

the subsoil restricts the ability of the roots to extract moisture and nutrients from subsoil, high ESP in surface 

soil results in soil crusting, water-logging, and poor germination. The presence of unused NO3-N and 

moisture in the soil profile results in economic losses and environmental degradation (Dang et al. 2006). 
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Figure 4.  Comparison of Cl, ESP, NO3-N, and volumetric moisture in constraint and unconstraint areas of the 

farm. 

 

Conclusion 

In cropped fields, sub-regions of low yield, consistent for several growing season, suggest the presence of a 

soil-related constraint. The techniques developed offer an opportunity to identify within-field spatial and 

temporal variability using satellite imagery as a surrogate measure of grain yield. The resulting information 

is directly useful for a farmer wanting to improve management spatially. It also helps stimulate further 

research hypotheses about the influence of soil variability on crop yield. 
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